

Lecture 4: Color display and 3D visualization

Zonghu Liao China University of Petroleum Beijing

Learner Objectives

After this section you should be able to:

- Identify good and bad color display practices,
- Manipulate HLS and RGB color models,
- Effectively use transparency,
- Display multiple attributes in a single image, and
- Apply color schemes that allow you to effectively communicate these features to others.

Outline

- 1. Review physiology of human visual perception
- 2. Examine differences between RGB, CMYK, HLS, and CIE-LAB color models
- 3. Review the following color display models:
 - Single gradational color bars
 - Dual gradational color bars
 - Blended images
 - Opacity/transparency mapping
 - Composite images
 - 2-D color tables
 - 3-D color tables
 - Shaded relief images
- 4. Identify good and bad color display practices

Components of geovolume visualization and interpretation

- 1. Recognition : determining distinguishing characteristics of an event to be mapped,
- 2. Signal Analysis: enhancing the distinguishing characteristics,
- 3. Color: selection of the optimum color scheme
- 4. Motion: animate between different depths, slices, or even attributes
- 5. Isolation via voxel processing: separation of events of interest from other data
- 6. Distance: accurate 3-D binocular projections

(Sheffield et al., 2000)

Color vision Cone and Rod receptors

Cone: 3 types, each being sensitive to a different range of wavelengths *Rod*: for night vision, sensitive to a broad range of light intensities

Visible spectrum

Cone response is interpreted by the brain as colors

The range of vision for the bee and butterfly extends into the ultraviolet. What kind of colors do they see?

Color deficiency

All color blindness 8.0% male 0.5% female

normal perception

red-green deficiency ~5% male http://www.firelily.com/opinions/color.html

Polarity conventions

- 1. Use blue for positive, red for negative
- 2. Always display your color bar, labeled with 'Positive', '0', and 'Negative'
- 3. Identify which polarity convention you are using

Flat spot showing polarity of 90 degrees

Shallow gas showing polarity of 90 degrees

Assessing polarity in the absence of well control

Multiattribute Display Tools

Overplotting

- Shaded relief maps
- Bump maps
- Color blending/transparency/opacity
- RGB blended images
- HLS color modulated images

Multiattribute display using overlays

(Anstey, 2005)

Multiattribute display of vector data using color icons

(Simon, 2005)

Multiattribute Display Tools

- Overplotting
- Shaded relief maps
 - Bump maps
 - Color blending/transparency/opacity
 - RGB blended images
 - HLS color modulated images

Shaded relief – specular illumination

(Barnes, 2002)

Diffuse reflection

$$I_d = \mathbf{\hat{s}} \cdot \mathbf{\hat{n}} = \cos(\theta)$$

sun vector normal to surface

Specular reflection

$$I_{s} = \left\| \mathbf{\hat{u}} \cdot \mathbf{\hat{v}} \right\| = \left\| \cos(\phi) \right\|^{b}$$
vector to reflection vector bserver

Shaded relief map (using modern commercial software)

(Data courtesy of Anadarko)

Multiattribute Display Tools

- Overplotting
- Shaded relief maps
- Bump maps
- Color blending/transparency/opacity
- RGB blended images
- HLS color modulated images

Horizon 'Bump Maps'

(Lynch et al., 2005)

Multiattribute Display Tools

- Overplotting
- Shaded relief maps
- Bump maps
- Color blending/transparency/opacity
- RGB blended images
- HLS color modulated images

Everyday applications of opacity

ATHER	81	Wand	Tue Feb 1	0, 2009 2:18 RM.d
	Altona	Reeding Cashion		Kendric
nfield	Contraction (Okarche	74 Piedmont	Wellston Arcadia Luther	Chandler Daven Warwick
Geary	Calumet Concho	Richland	Arcadia Lake	Sparks
eport	E Rer Bann	The Village 4 Nichols Hills Bethany	Spencer Choctaw 62	Meeker Prague
Niles	Powe	Oklahoma City Nustang (44)	Midwest City McLoud	177 Johnson
keba Scott	Mino	n Tutlia	Moore Lake Stanley	Shawnee
nger			Hall Tr	Earlsboro
Gracemon	Dutton Pocas	set Amher	ian isby	Brooksville

Multiattribute display using blending/transparency/opacity

Fault plane:

$\begin{array}{r} R = (R_1 + R_2)/2 \\ Blended Image: G = (G_1 + G_2)/2 \\ B = (B_1 + B_2)/2 \end{array}$

 $\frac{R_1}{G_1}$

B₁

Seismic data:

 R_2 G_2

 B_2

(after Meyer et al., 2001)

Animating coherence and k₂ principal curvature

Animating coherence and k₂ principal curvature

Co-rendering coherence and k₂ principal curvature (50% opacity)

Alpha-blending of 20 horizon slices

(Kidd, 1999)

Color Depth (the number of colors)

16,777,216 colors R=256,G=256,B=256

4096 colors R=16,G=16,B=16

216 colors R=6,G=6,B=6

(24-bit color)

Only a few interpretation packages provide 24-bit color. Most are still limited to 8-bit color (256 colors)

(Dao and Marfurt, 2011)

Multiattribute Display Tools

- Overplotting
- Shaded relief maps
- Bump maps
- Color blending/transparency/opacity
- RGB blended images
 - HLS color modulated images

• CMYK used for hard copies

nd CMY color models

Commission International d'Eclairage (CIE) color map of human visual perception

http://www.hf.faa.gov

RGB color stack

Red =16 Hz Hz

Green=32 Hz

Blue=48

(Guo and Marfurt, 2007)

Eigenvalues of gradient structure tensor

Semblance

Dip Magnitude

(Courtesy ffA

Multiattribute Display Tools

- Overplotting
- Shaded relief maps
- Bump maps
- Color blending/transparency/opacity
- RGB blended images
- HLS color modulated images

The HLS color model

Hue: the wavelength contrast aspect of color

Lightness: the level of illumination

Saturation: the degree to which the hue differs from a neutral gray

Examples of 2D color bars

Peak frequency

Multiattribute display using 2D color tables

4-40

Multiattribute display using 3D color tables

L=coherence

t=1.0 s

S=dip magnitude, H=dip azimuth, L=coherence

(Lin et al., 2003)

Multiattribute display using 3D color tables azimuth -> H dip magnitude -> S coherence -> L

(Data courtesy of OXY)

3D color tables

azimuth -> H dip magnitude -> S coherence -> L

(Data courtesy of OXY)

Common display pitfalls

 displaying continuous data with colors that are not adjacent in RGB or HLS space

 using a dual gradational color bar to display single polarity data

not using a neutral color to display zero values

using a single gradational color bar to display cyclical data

 defining display limits assuming a normal distribution histogram

interpolating discontinuous color bars

1D Color bars for effective attribute display

Amplitude extractions, frequency, time/structure, dip magnitude, envelope, coherence, ...

Seismic data, curvature, ...

Phase, azimuth, strike,...

Good and bad amplitude color bars

(Brown, 2007)

4-46

Color perception is a learned response

convention ?

Order of rainbow?

Examples of good and bad color maps

Time structure map plotted against rainbow colors

Good: Shallow structures where oil and gas may be found are 'hotter'

Examples of good and bad color maps

Time structure map plotted against rainbow colors

Bad: Deeper structures are hotter (like temperature) – this is how geophysicists plot velocity. Eye is drawn to synclinal features.

Common display pitfalls

 displaying continuous data with colors that are not adjacent in RGB or HLS space

 using a dual gradational color bar to display single polarity data

not using a neutral color to display zero values

using a single gradational color bar to display cyclical data

 defining display limits assuming a normal distribution histogram

interpolating discontinuous color bars

Examples of good and bad color maps

Single gradational

Double gradational

4-51 Always use a background color for zero!

An effective blending scheme

(Hadler-Jacobsen et al., 2010)

An effective blending scheme

(Hadler-Jacobsen et al., 2010)

Common display pitfalls

 displaying continuous data with colors that are not adjacent in RGB or HLS space

 using a dual gradational color bar to display single polarity data

not using a neutral color to display zero values

using a single gradational color bar to display cyclical data

 defining display limits assuming a normal distribution histogram

interpolating discontinuous color bars

Examples of good and bad color maps

Maximum curvature, k_{max}

Maximum curvature, k_{max} (with values near zero set to background!)

(Roberts, 2001)

Common display pitfalls

 displaying continuous data with colors that are not adjacent in RGB or HLS space

 using a dual gradational color bar to display single polarity data

- not using a neutral color to display zero values
- using a single gradational color bar to display cyclical data
- defining display limits assuming a normal distribution histogram

interpolating discontinuous color bars

Attribute Display in Interpretation Workstations

Vertical slice through seismic amplitude Central Basin Platform, TX

Attribute Display in Interpretation Workstations

Vertical slice through instantaneous phase – single gradational gray scale color bar

Attribute Display in Interpretation Workstations Phase

Vertical slice through instantaneous phase – Cyclical color bar using (default) RMS scaling

Attribute Display in Interpretation Workstations

Vertical slice through instantaneous phase – Cyclical color bar using user-defined scaling

Common display pitfalls

 displaying continuous data with colors that are not adjacent in RGB or HLS space

 using a dual gradational color bar to display single polarity data

not using a neutral color to display zero values

using a single gradational color bar to display cyclical data

 defining display limits assuming a normal distribution histogram

interpolating discontinuous color bars

4-61

Attribute Display in Interpretation Workstations

Time (s)

Time slice through instantaneous phase – Cyclical color bar using user-defined scaling. Interpolated traces.

Attribute Display in Interpretation Workstations Phase

Time slice through instantaneous phase – Cyclical color bar using user-defined scaling. Replicated traces.

2D color bars

Colors		Operations	Geometry	Opacity
🍼 Style	0	Info		Statistics
🎲 'Base map' annotation				
Settings are inherited from parent folder				
	_			
Volume visualization				
Method Smooth				
 Interpolate using tile edge blending Enhance intersection resolution: 				
Vertical: 3 V Horizontal: 3 V				
venica.	· ·			
Visualization				
Enable zone and segment filters for intersections				
Enable bump mapping				
Enable transparency for intersections				
Max resolution 💿 Full 🛛 Medium 🔵 Low				
Performance				
Enable co	mpressed	textures		
Fast scen	e moveme	ent		
Decimation w	nile draggii	ng:	2 🔽	?
Time to wait fo	or data	L .	-00	
		[ms ms	
0 5000				
		Apply	🗸 ОК 💦 🚺	🗙 Cancel

Types of Attribute Displays

- Vertical and horizontal (time) slices through attribute volumes
- Attributes computed from a picked horizon
 - Time-structure maps
 - Dip-magnitude and dip-azimuth maps
 - Horizon-based curvature
- Attributes extracted *along* a picked horizon (horizon slices)
- Attributes extracted parallel to a picked horizon (phantom horizon slices)
- Attributes extracted proportionally between two picked horizons (stratal slices)
- Attributes computed between two picked horizons (formation attributes)
- Geobodies

Two picked horizons

Time-structure map of horizon B

Time-structure map of horizon B - 120 ft (a phantom horizon)

Horizon slice through attributes (along horizon B)

Phantom horizon slice through attributes (120 ft above horizon B)

Types of Attribute Displays

- Vertical and horizontal (time) slices through attribute volumes
- Attributes computed from a picked horizon
 - Time-structure maps
 - Dip-magnitude and dip-azimuth maps
 - Horizon-based curvature
- Attributes extracted *along* a picked horizon (horizon slices)
- Attributes extracted parallel to a picked horizon (phantom horizon slices)
- Attributes extracted proportionally between two picked horizons (stratal slices)
- Attributes computed between two picked horizons (formation attributes)
- Geobodies

9 stratal (proportional) slices between horizons A and B

Stratal slice through attributes (nine proportional slices between horizons A and B)

(Sarkar et al. 2009)

Types of Attribute Displays

- Vertical and horizontal (time) slices through attribute volumes
- Attributes computed *from* a picked horizon
 - Time-structure maps
 - Dip-magnitude and dip-azimuth maps
 - Horizon-based curvature
- Attributes extracted *along* a picked horizon (horizon slices)
- Attributes extracted parallel to a picked horizon (phantom horizon slices)
- Attributes extracted proportionally between two picked horizons (stratal slices)
- Attributes computed between two picked horizons (formation attributes)
- Geobodies

Voxel Detection and Geobodies (Connected Component Labeling)

Voxel Detection and Geobodies

(Masaferro et al., 2003)

Time slices through strike modulated by most-negative principal curvature

(Seismic data courtesy of Devon Energy)

"Box probe" through strike modulated by most-negative principal curvature

(Seismic data courtesy of Devon Energy)

Boxprobe rendering of ridge and dome shapes with a coherence time slice

(Seismic data courtesy of Parallel Petroleum LLC)

Boxprobe rendering of ridge and dome shapes with a coherence time slice

Types of Attribute Displays

- Vertical and horizontal (time) slices through attribute volumes
- Attributes computed *from* a picked horizon
 - Time-structure maps
 - Dip-magnitude and dip-azimuth maps
 - Horizon-based curvature
- Attributes extracted *along* a picked horizon (horizon slices)
- Attributes extracted parallel to a picked horizon (phantom horizon slices)
- Attributes extracted proportionally between two picked horizons (stratal slices)
- Attributes computed between two picked horizons (formation attributes)
- Geoprobes

Picking a geobody

Picking multiple geobodies

Single Attribute Display

In Summary:

• The best color scales are those that have analogues to everyday human perception and/or experience (e.g. hot/cold colors, shaded relief maps, ...)

• Hue is a natural choice for attributes that are cyclic (e.g. phase, azimuth, strike, ...)

• Lineaments or discontinuities show up best in monochrome (gray scale, sepia,...)

• Choice of discontinuous color scales prevent the data from speaking for themselves. Rather use single or double gradational scales (Brown, 1999)

• Use a neutral background color for data having low information content! (e.g. white or black for zero curvature) (Kidd, 1999).

Multiattribute Display

 The RGB model works best for attributes that are of the same type and have similar amplitude ranges

 Blending works best when one of the attributes is plotted against the black-white lightness axis, rendering easy-to-interpret pastel images

• Blending is easy to implement on surfaces, more challenging to implement on volumes

The HLS color model allows us to construct 2D and 3D color tables that allow the interpreter to modulate attributes by a measure of 'confidence'
meaningful azimuths require finite dip magnitude

meaningful frequencies require finite spectral amplitude

• Crossplotting, boxprobes, and mulitattribute geobody definition bridges the gap between multiattribute visualization and clustering

Full sense interpretation

(Harding et al., 2000)

wavelength (nm)

4-87

Defining a 2D color table

